Abstract
Predictive algorithms for exposure characterization of engineered nanoparticles (ENPs) in the ecosystems are essential to improve the development of robust nano-safety frameworks. Here, machine learning (ML) techniques were utilised for data mining and prediction of the dynamic aggregation transformation process in aqueous environments using case studies of nZnO and nTiO2. Supervised ML models using input variables of natural organic matter, ionic strength, size, and ENPs concentration showed poor prediction performance based on statistical metric values of root mean square error (RMSE), mean absolute error (MAE), coefficient of determination (R2), and Nash-Sutcliffe efficiency (NSE) for both types of ENP. On the contrary, algorithms developed using model input parameters of zeta potential, pH, and time had good generalisation and high prediction accuracy. Among the five developed ML algorithms, random forest regression, support vector regression, and artificial neural network generated good prediction accuracy for both data sets. Therefore, the use of ML can be valuable in the development of robust nano-safety frameworks to optimise societal benefits, and for proactive long-term ecological protection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.