Abstract

Abstract A tensegrity structure involves the presence of elements withstanding pure compression, and others under pure tension only. Metal rubber is introduced into a tensegrity prism strut to create a mechanical metamaterial with energy absorption and tuneable dynamic properties. In this work we describe the design and development of the meta-tensegrity structure with particular emphasis on the evaluation of parameters such as the structural size, the metal rubber stiffness, the initial internal force and the external compression load. Prototypes of tensegrity prisms with and without metal rubber inserts have been assembled and subjected to quasi-static loading. The model used to design the meta tensegrity prism has been then modified to take into account specific manufacturing and internal dissipation mechanisms typical of this configuration. The updated model provides a better comparison with the experimental results. Both the theoretical and experimental data show that the introduction of the metal rubber within the tensegrity configuration contributes to improve significantly the energy absorption, and to reduce the stiffness of the whole tensegrity structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.