Abstract

A label-free microscopy technology, dark-field microscopy, is widely used for providing high-contrast imaging for weakly scattering materials and unstained samples. However, traditional dark-field microscopes often require additional components and larger condensers as the numerical aperture increases. A solution to this is the use of a meta-surface slide. This slide utilizes a multilayer meta-surface and quantum dots to convert incident white light into a red glow cone emitted at a larger angle. This enables the slide to be used directly with conventional biological microscopy to achieve dark-field imaging. This paper focuses on the design and preparation of the meta-surface and demonstrates that using the meta-surface in a standard transmission optical microscope results in a dark-field image with higher contrast than a bright-field image, especially when observing samples with micron-sized structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call