Abstract

In this paper, we study learning-assisted multi-user scheduling for the wireless downlink. There have been many scheduling algorithms developed that optimize for a plethora of performance metrics; however a systematic approach across diverse performance metrics and deployment scenarios is still lacking. We address this by developing a meta-scheduler - given a diverse collection of schedulers, we develop a learning-based overlay algorithm (meta-scheduler) that selects that ``best'' scheduler from amongst these for each deployment scenario. More formally, we develop a multi-armed bandit (MAB) framework for meta-scheduling that assigns and adapts a score for each scheduler to maximize reward (e.g., mean delay, timely throughput etc.). The meta-scheduler is based on a variant of the Upper Confidence Bound algorithm (UCB), but adapted to interrupt the queuing dynamics at the base-station so as to filter out schedulers that might render the system unstable. We show that the algorithm has a poly-logarithmic regret in the expected reward with respect to a genie that chooses the optimal scheduler for each scenario. Finally through simulation, we show that the meta-scheduler learns the choice of the scheduler to best adapt to the deployment scenario (e.g. load conditions, performance metrics).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.