Abstract

Predictive latent space near-infrared (NIR) spectral modelling with PLS (Partial Least Squares) has two main tasks that require user input to achieve optimal models. The first is the selection of the optimal pre-processing of NIR spectra and the second is the selection of the optimal number of PLS model components assuming the data is outlier free. Often the two tasks are performed in an exhaustive search to find the best pre-processing as well as the optimal number of model components. We propose a novel approach called meta partial least square (META-PLS) which drops the need for both the pre-processing optimisation and exhaustive search for optimal model components. We utilise the stepwise nature of the PLS algorithm to learn complementary information from different pre-processed forms of the same data set as performed in multiblock pre-processing ensemble models to avoid pre-processing selection but receive help from the pre-processing ensembles, and deploy a weighted randomisation test to decide the optimal number of model components automatically. The performance of the approach for performing automatic NIR spectral modelling is demonstrated with several real data sets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.