Abstract

Network representation learning has achieved significant success in homogeneous network data analysis in recent years. Nevertheless, they cannot be directly applied in multiplex networks. To overcome the characteristic of heterogeneity in multiplex networks, several emerging methods utilize the concept of meta-path to denote different types of relations and obtain the node representations for each type of meta-path individually. Despite the remarkable progress, there still exist two important issues in the previous approaches. First, the complementary information between different types of meta-paths that may make the representations more discriminative, is rarely investigated. Second, current studies generally learn multiplex node representations based on the original graph structure, while overlooking the latent relations between nodes. To address the aforementioned issues, in this paper, we propose a novel model with Meta-path Infomax joint Structure Enhancement (MISE) for multiplex network representations. Specifically, we first develop a meta-path infomax mechanism, which maximizes the mutual information between local and global meta-path representations, making the node representation contain more complementary information. Additionally, we propose a graph structure learning module that captures the implicit correlations between nodes to construct the latent graph structure. Such structure enhancement is a simple yet surprisingly effective technique to learn high-quality representations. We sufficiently evaluate the performance of our proposal on both supervised and unsupervised downstream tasks. Comprehensive experimental results show that our MISE achieves a promising boost in performance on a variety of real-world datasets for multiplex network representation learning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call