Abstract

Managing computational complexity and designing effective visual representations are two important challenges for the visualization of large, complex, high-dimensional datasets. Parallel coordinates are an effective technique for visualizing high-dimensional data, but do not scale well to very large datasets. The addition of the temporal dimension leads to more uncertainty due to clutter on screen. Consequently, this poses a significant challenge for visually finding trends and patterns that maximize insight about the underlying time-varying properties of the data. To address these problems, we present meta parallel coordinates, a parallel coordinates display that is guided by perceptually motivated visual metrics. These metrics describe the visual structures typically found in parallel coordinates and thus aid the user's analysis by providing meaningful views of the data. Since they are computed in screen space, our metrics are computationally more efficient than data-based metrics. Our choice of metrics is driven by the different analytical tasks that a user typically wants to perform with time-varying multivariate data. In particular, we have worked with domain scientists who performed simulations of bioremediation experiments, and use their data and results to demonstrate the usefulness of our approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.