Abstract

In nanophotonics, subwavelength localization of light is usually associated with plasmonics, the collective excitation of electrons and electromagnetic waves at metallic surfaces. Recent developments in the physics of high-index dielectric nanoparticles, however, suggest an alternative mechanism of light localization: low-order dipole and higherorder multipole Mie resonances. These resonances can generate a strong magnetic response that can be leveraged in designing metasurfaces with unidirectional scattering, as well as efficient metadevices. Indeed, as the power of this approach becomes increasingly apparent, high-index nanomaterials could complement, or even substitute for, plasmonic materials in a range of devices—and could spur a new era in nonlinear nanophotonics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call