Abstract

Two-sided assembly line is a set of sequential workstations where task operations can be performed at two sides of the line. This type of line is commonly used for the assembly of large-sized products: cars, buses, and trucks. This paper propose a Decoding Algorithm with Teaching-Learning Based Optimization (TLBO), a recently developed nature-inspired search method to solve the two-sided assembly line balancing problem (TALBP). The algorithm aims to minimize the number of mated-workstations for the given cycle time without violating the synchronization constraints. The correlation between the input parameters and the emergence point of objective function value is tested using scenarios generated by design of experiments. A two-sided assembly line operated in an Indonesia's multinational manufacturing company is considered as the object of this paper. The result of the proposed algorithm shows reduction of workstations and indicates that there is negative correlation between the emergence point of objective function value and the size of population used.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.