Abstract

In this review, we consider state-of-the-art density functional theory (DFT) investigations of strongly correlated systems performed with the meta-generalized gradient approximation (meta-GGA) strongly constrained and appropriately normed (SCAN) functional during the last five years. The study of such systems in the framework of the DFT is complicated because the well-known exchange–correlation functionals of the local density approximation (LDA) and generalized gradient approximation (GGA) families are not designed for strong correlations. The influence of the exchange–correlation effects beyond classical LDA and GGA are considered in view of the prediction of the ground state structural, magnetic, and electronic properties of the magnetic materials, including pure metals, binary compounds, and multicomponent Heusler alloys. The advantages of SCAN and points to be enhanced are discussed in this review with the aim of reflecting the modern state of computational materials science.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.