Abstract

Treating textile wastewaters were always inhibited by its higher salt concentration and temperature. In this study, a halo-thermophilic bacterial consortium YM was enriched with ability to decolorize acid brilliant scarlet GR (ABS) at 55 °C and 10% salinity. Under optimum conditions of pH (8), temperature (55 °C), and salinity (10%), YM decolorized 97% of ABS under anaerobic conditions. Alteribacillus was identified to be the dominant genus in consortium YM. Consortium YM showed significant decolorization ability under a wide range of salinity (1%–10%), pH (7–9) and temperature (45 °C–60 °C). The degradation pathway of ABS was proposed by the combination of UV–vis spectral analysis, Fourier transform infrared (FTIR), gas chromatography mass spectrometric (GC-MS), and metagenomic analysis. Azoreductase, which was an important enzyme in decolorization process, was identified with great variation in the genome of consortium YM. Meanwhile, the metabolic intermediates after decolorization was identified with low biotoxicity by phytotoxicity tests. This study first identified that Alterbacillus play an important role in azo dye decolorization and degradation process under halo-thermophlic conditions and provided significant knowledge for azo dye decolorization and degradation process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call