Abstract
The Internet of Medical Things (IoMT) is a transformative fusion of medical sensors, equipment, and the Internet of Things, positioned to transform healthcare. However, security and privacy concerns hinder widespread IoMT adoption, intensified by the scarcity of high-quality datasets for developing effective security solutions. Addressing these challenges, we propose a novel framework for cyberattack detection in dynamic IoMT networks. This framework integrates Federated Learning with Meta-learning, employing a multi-phase architecture for identifying known attacks, and incorporates advanced clustering and biased classifiers to address zero-day attacks. The framework's deployment is adaptable to dynamic and diverse environments, utilizing an Infrastructure-as-a-Service (IaaS) model on the cloud and a Software-as-a-Service (SaaS) model on the fog end. To reflect real-world scenarios, we introduce a specialized IoMT dataset. Our experimental results indicate high accuracy and low misclassification rates, demonstrating the framework's capability in detecting cyber threats in complex IoMT environments. This approach shows significant promise in bolstering cybersecurity in advanced healthcare technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.