Abstract
Ecologists still have to elucidate the complex feedback interactions operating among biodiversity and ecosystem processes in engineered systems. To address this, a field experiment was conducted to mimic natural mussel bed meta-ecosystems (Mytilus spp.) of the lower St. Lawrence Estuary (Quebec, Canada) and partition the effects of their biotic and abiotic properties and spatial structure on ecosystem processes and community dynamics of associated macro-invertebrates. We found positive intraspecific feedbacks between mussels and their recruits, and negative interspecific feedbacks between mussels and their associated ecosystem. These feedbacks were associated with mussel bed ecosystem processes (fluxes of ammonium and oxygen). In addition, we showed that proximity between mussel patches increased within-patch nutrient fluxes. Our study revealed the potential for meta-ecosystem engineering to drive feedback interactions between community and ecosystem functioning in marine fragmented systems. It also shows the relevance of meta-ecosystem theories as a conceptual framework to elucidate biotic and abiotic processes controlling ecosystem and community structure. Such framework could contribute to ecosystem-based management of spatially structured systems such as reserve networks and fragmented ecosystems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.