Abstract

Evidence is mounting that vertebrate defaunation greatly impacts global biogeochemical cycling. Yet, there is no comprehensive assessment of the potential vertebrate influence over plant decomposition, despite litter decay being one of the largest global carbon fluxes. We therefore conducted a global meta-analysis to evaluate vertebrate effects on litter mass loss and associated element release across terrestrial and aquatic ecosystems. Here we show that vertebrates affected litter decomposition by various direct and indirect pathways, increasing litter mass loss by 6.7% on average, and up to 34.4% via physical breakdown. This positive vertebrate impact on litter mass loss was consistent across contrasting litter types (woody and non-woody), climatic regions (boreal, temperate and tropical), ecosystem types (aquatic and terrestrial) and vertebrate taxa, but disappeared when evaluating litter nitrogen and phosphorus release. Moreover, we found evidence of interactive effects between vertebrates and non-vertebrate decomposers on litter mass loss, and a larger influence of vertebrates at mid-to-late decomposition stages, contrasting with the invertebrate effect known to be strongest at early decomposition stage. Our synthesis demonstrates a global vertebrate control over litter mass loss, and further stresses the need to account for vertebrates when assessing the impacts of biodiversity loss on biogeochemical cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.