Abstract

Factors promoting the invasion success of introduced populations have been receiving increased attention in studies of biological invasions. Previous reports have indicated that successful invasions may be attributable to reduced genetic diversity in the invasive species. However, there is large variation in the magnitude and direction of the impact of exotic species that have remained unexplained. Here, we present a structured meta-analysis of papers investigating the genetic diversity of native and introduced populations of exotic insects using nuclear microsatellites and mitochondrial DNA sequences. The results indicate that invasion by exotic insects had an overall reducing effect on the genetic diversity of the invading population, with nonzero effect sizes for the number of alleles (NA), observed heterozygosity (Ho), expected heterozygosity (He) and nucleotide diversity (Nd). However, when analyzing different orders (e.g., Lepidoptera, Hemiptera), the effect sizes of NA, Ho and Nd in Lepidoptera were found to bracket zero, as did the effect size of He in Hemiptera. These results suggest an asymmetric reduction in the genetic diversity of introduced populations of exotic insects, indicating diverse mechanisms underlying their successful invasion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.