Abstract

Individual participant data meta-analysis is a commonly used alternative to the traditional aggregate data meta-analysis. It is popular because it avoids relying on published results and enables direct adjustment for relevant covariates. However, a practical challenge is that the studies being combined often vary in terms of the potential confounders that were measured. Furthermore, it will inevitably be the case that some individuals have missing values for some of those covariates. In this paper, we demonstrate how these challenges can be resolved using a propensity score approach, combined with multiple imputation, as a strategy to adjust for covariates in the context of individual participant data meta-analysis. To illustrate, we analyze data from the Bill and Melinda Gates Foundation-funded Healthy Birth, Growth, and Development Knowledge Integration project to investigate the relationship between physical growth rate in the first year of life and cognition measured later during childhood. We found that the overall effect of average growth velocity on cognitive outcome is slightly, but significantly, positive with an estimated effect size of 0.36 (95% CI 0.18, 0.55).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.