Abstract
Uridine 5'-diphospho-glucuronosyltransferases (UGTs) are involved in the metabolism of lamotrigine, but whether the UGT1A4 and UGT2B7 genetic polymorphisms affect lamotrigine concentration remains controversial. Thus, the objective of this meta-analysis was to analyse the influence of UGT1A4 and UGT2B7 genetic polymorphisms on lamotrigine concentration. Through searching, screening, selection, data extraction and quantitative analyses, the influence of UGT1A4 and UGT2B7 genetic polymorphisms on lamotrigine concentration-to-dose ratio (CDR) was assessed by meta-analysis of nine studies. Neither UGT1A4 70C>A nor 142T>G significantly affected lamotrigine CDR values (standardized difference in means [SDM]=0.433, 95% confidence interval [CI]=-0.380-1.302; SDM=-0.458, 95% CI=-1.141-0.224, respectively). Only the UGT2B7 -161C>T homozygous variant had significantly higher CDR values than the wild-type (WT) and heterozygous variant (SDM=0.634, 95% CI= 0.056-1.222). In conclusion, CDR of lamotrigine was significantly higher for the UGT2B7 -161C>T homozygous variant than for the WT and heterozygous variant. Thus, UGT2B7 -161C>T homozygous variant needs to receive reduced dose.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Basic & Clinical Pharmacology & Toxicology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.