Abstract

BackgroundAssociation studies in recently admixed populations are extremely useful to identify the genetic architecture of pigmentation, due to their high genotypic and phenotypic variation. However, to date only four Genome-Wide Association Studies (GWAS) have been carried out in these populations.ResultsWe present a GWAS of skin pigmentation in an admixed sample from Cuba (N = 762). Additionally, we conducted a meta-analysis including the Cuban sample, and admixed samples from Cape Verde, Puerto Rico and African-Americans from San Francisco. This meta-analysis is one of the largest efforts so far to characterize the genetic basis of skin pigmentation in admixed populations (N = 2,104). We identified five genome-wide significant regions in the meta-analysis, and explored if the markers observed in these regions are associated with the expression of relevant pigmentary genes in human melanocyte cultures. In three of the regions identified in the meta-analysis (SLC24A5, SLC45A2, and GRM5/TYR), the association seems to be driven by non-synonymous variants (rs1426654, rs16891982, and rs1042602, respectively). The rs16891982 polymorphism is strongly associated with the expression of the SLC45A2 gene. In the GRM5/TYR region, in addition to the rs1042602 non-synonymous SNP located on the TYR gene, variants located in the nearby GRM5 gene have an independent effect on pigmentation, possibly through regulation of gene expression of the TYR gene. We also replicated an association recently described near the MFSD12 gene on chromosome 19 (lead variant rs112332856). Additionally, our analyses support the presence of multiple signals in the OCA2/HERC2/APBA2 region on chromosome 15. A clear causal candidate is the HERC2 intronic variant rs12913832, which has a profound influence on OCA2 expression. This variant has pleiotropic effects on eye, hair, and skin pigmentation. However, conditional and haplotype-based analyses indicate the presence of other variants with independent effects on melanin levels in OCA2 and APBA2. Finally, a follow-up of genome-wide signals identified in a recent GWAS for tanning response indicates that there is a substantial overlap in the genetic factors influencing skin pigmentation and tanning response.ConclusionsOur meta-analysis of skin pigmentation GWAS in recently admixed populations provides new insights about the genetic architecture of this complex trait.

Highlights

  • Association studies in recently admixed populations are extremely useful to identify the genetic architecture of pigmentation, due to their high genotypic and phenotypic variation

  • We identified five genome-wide significant regions in a meta-analysis of skin pigmentation in recently admixed populations with primarily European and African ancestry, and explored if the markers observed in these regions are associated with the expression of relevant pigmentary genes in human melanocyte cultures

  • In three of the regions identified in the meta-analysis (SLC24A5, SLC45A2, and GRM5/TYR), the association seems to be driven by non-synonymous variants

Read more

Summary

Introduction

Association studies in recently admixed populations are extremely useful to identify the genetic architecture of pigmentation, due to their high genotypic and phenotypic variation. Association studies in recently admixed populations can be extremely useful to identify the genetic architecture of pigmentation, due to their wide range of genotypic and phenotypic variation, and the increased statistical power to detect associations for genetic markers that have extreme frequencies in the parental population groups [3]. To date only four genome-wide pigmentation studies have been conducted in recently admixed populations [6,7,8,9]. In spite of the fact that there is substantial variation in the skin pigmentation spectrum within the African continent, to date only two GWAS have been conducted in African populations [10, 11]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.