Abstract
The stiffness index (SI) from quantitative ultrasound measurements is a good indicator of BMD and may be used to predict the risk of osteoporotic fracture. We conducted a genomewide association study (GWAS) for SI using 7742 individuals from the Taiwan Biobank, followed by a replication study in a Korean population (n = 2955). Approximately 6.1 million SNPs were subjected to association analysis, and SI-associated variants were identified. We further conducted a meta-analysis of Taiwan Biobank significant SNPs with a Korean population-based cohort. Candidate genes were prioritized according to epigenetic annotations, gene ontology, protein-protein interaction, GWAS catalog, and expression quantitative trait loci analyses. Our results revealed seven significant single-nucleotide polymorphisms (SNPs) within three loci: 7q31.31, 17p13.3, and 11q14.2. Conditional analysis showed that three SNPs, rs2536195 (CPED1/WNT16), rs1231207 (SMG6), and rs4944661 (LOC10050636/TMEM135), were the most important signals within these regions. The associations for the three SNPs were confirmed in a UK Biobank estimated BMD GWAS; these three cytobands were replicated successfully after a meta-analysis with a Korean population cohort as well. However, two SNPs were not replicated. After prioritization, we identified two novel genes, RAB15 and FNTB, as strong candidates for association with SI. Our study identified three SI-associated SNPs and two novel SI-related genes. Overall, these results provide further insight into the genetic architecture of osteoporosis. Further studies in larger East Asian populations are needed. © 2019 American Society for Bone and Mineral Research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.