Abstract

This paper develops and implements a fully Bayesian approach to meta-analysis, in which uncertainty about effects in distinct but comparable studies is represented by an exchangeable prior distribution. Specifically, hierarchical normal models are used, along with a parametrization that allows a unified approach to deal easily with both clinical trial and case-control study data. Monte Carlo methods are used to obtain posterior distributions for parameters of interest, integrating out the unknown parameters of the exchangeable prior or 'random effects' distribution. The approach is illustrated with two examples, the first involving a data set on the effect of beta-blockers after myocardial infarction, and the second based on a classic data set comprising 14 case-control studies on the effects of smoking on lung cancer. In both examples, rather different conclusions from those previously published are obtained. In particular, it is claimed that widely used methods for meta-analysis, which involve complete pooling of 'O-E' values, lead to understatement of uncertainty in the estimation of overall or typical effect size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.