Abstract

Management of coronavirus disease 2019 (COVID-19) in India is a top government priority.However, there is a lack of COVID-19 adjusted case fatality risk (aCFR) estimates and information on states with high aCFR. Data on COVID-19 cases and deaths in the first pandemic wave and 17 state-specific geodemographic, socio-economic, health and comorbidity-related factors were collected. State-specific aCFRs were estimated, using a 13-day lag for fatality. To estimate country-level aCFR in the first wave, state estimates were meta-analysed based on inverse-variance weighting and aCFR as either a fixed- or random-effect. Multiple correspondence analyses, followed by univariable logistic regression, were conducted to understand the association between aCFR and geodemographic, health and social indicators.Based on health indicators, states likely to report a higher aCFR were identified. Using random- and fixed-effects models, cumulative aCFRs in the first pandemic wave on 27 July 2020 in India were 1.42% (95% CI 1.19%–1.70%) and 2.97% (95% CI 2.94%–3.00%), respectively. At the end of the first wave, as of 15 February 2021, a cumulative aCFR of 1.18% (95% CI 0.99%–1.41%) using random and 1.64% (95% CI 1.64%–1.65%) using fixed-effects models was estimated. Based on high heterogeneity among states, we inferred that the random-effects model likely provided more accurate estimates of the aCFR for India. The aCFR was grouped with the incidence of diabetes, hypertension, cardiovascular diseases and acute respiratory infections in the first and second dimensions of multiple correspondence analyses. Univariable logistic regression confirmed associations between the aCFR and the proportion of urban population, and between aCFR and the number of persons diagnosed with diabetes, hypertension, cardiovascular diseases and stroke per 10,000 population that had visited NCD (Non-communicable disease) clinics. Incidence of pneumonia was also associated with COVID-19 aCFR. Based on predictor variables, we categorised 10, 17 and one Indian state(s) expected to have a high, medium and low aCFR risk, respectively. The current study demonstrated the value of using meta-analysis to estimate aCFR. To decrease COVID-19 associated fatalities, states estimated to have a high aCFR must take steps to reduce co-morbidities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.