Abstract
The tremendous menace of the COVID-19 pandemic has underscored the urgency for antipathogen masks to stop the transmission of airborne infectious diseases. Most prevailing antipathogen masks manifest a slower sterilization rate that lags behind the pathogen momentum traversing the masks, thereby engendering an elevated susceptibility to infection. Here we tailor nanofibrous meta-aerogel electric traps, 3D-assembled from self-knotted carbon nanotube networks in an all rigid nanofibrous skeleton. This superior configuration revolves around the creation of numerous "dielectrophoretic-aerodynamic grippers", which are capable of directional manipulation of microbes toward the region of the lethal intensive electric field. Based on this, we present a disinfection unit comprising a pair of aerogel electrodes that demonstrate a rapid killing rate (>99.99% biocidal efficacy within 0.016 s) and long-term durability (12 h of continuous operation). Additionally, a microbutton lithium cell is employed as a power supply to fabricate an antipathogen face mask with this disinfection unit, which exhibits superior pathogen inactivation efficacy compared to commercial masks. This scalable biocidal protective equipment holds great potential for use in emergency medical services.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.