Abstract

Epidermal growth factor receptor (EGFR), member of the human epidermal growth factor receptor (HER) family, plays a critical role in regulating multiple cellular processes including proliferation, differentiation, cell migration and cell survival. Deregulation of the EGFR signaling has been found to be associated with the development of a variety of human malignancies including lung, breast, and ovarian cancers, making inhibition of EGFR the most promising molecular targeted therapy developed in the past decade against cancer. Human non small cell lung cancers (NSCLC) with activating mutations in the EGFR gene frequently experience significant tumor regression when treated with EGFR tyrosine kinase inhibitors (TKIs), although acquired resistance invariably develops. Resistance to TKI treatments has been associated to secondary mutations in the EGFR gene or to activation of additional bypass signaling pathways including the ones mediated by receptor tyrosine kinases, Fas receptor and NF-kB. In more than 30–40% of cases, however, the mechanisms underpinning drug-resistance are still unknown. The establishment of cellular and mouse models can facilitate the unveiling of mechanisms leading to drug-resistance and the development or validation of novel therapeutic strategies aimed at overcoming resistance and enhancing outcomes in NSCLC patients. Here we describe the establishment and characterization of EGFR TKI-resistant NSCLC cell lines and a pilot study on the effects of a combined MET and EGFR inhibitors treatment. The characterization of the erlotinib-resistant cell lines confirmed the association of EGFR TKI resistance with loss of EGFR gene amplification and/or AXL overexpression and/or MET gene amplification and MET receptor activation. These cellular models can be instrumental to further investigate the signaling pathways associated to EGFR TKI-resistance. Finally the drugs combination pilot study shows that MET gene amplification and MET receptor activation are not sufficient to predict a positive response of NSCLC cells to a cocktail of MET and EGFR inhibitors and highlights the importance of identifying more reliable biomarkers to predict the efficacy of treatments in NSCLC patients resistant to EGFR TKI.

Highlights

  • Epidermal growth factor receptor (EGFR), member of the human epidermal growth factor receptor (HER) family controls key cellular programs, including survival, proliferation, differentiation and migration during development and adult life [1, 2]

  • Acquired non small cell lung cancer (NSCLC) resistance to tyrosine kinase inhibitors (TKIs) has been associated to overexpression and activation of other receptor tyrosine kinases (RTKs) including HER3, AXL or MET [22,23,24,25,26], to modulation of fractional effect (Fa) receptor and NF-kB signaling pathways [27] and to epithelial to mesenchymal transition (EMT) [28,29,30]

  • We demonstrated that MET gene amplification and MET receptor activation are not sufficient to predict a positive effect of a combination of MET and EGFR inhibitors in erlotinib resistant NSCLC, suggesting the need of identifying other biomarkers in order to move towards a precision medicine treatment in NSCLC patients

Read more

Summary

Introduction

Epidermal growth factor receptor (EGFR), member of the human epidermal growth factor receptor (HER) family controls key cellular programs, including survival, proliferation, differentiation and migration during development and adult life [1, 2]. NSCLC patients, whose tumors harbor EGFR sensitizing mutations in exon 19/21, get a meaningful clinical benefit from EGFR TKI treatments. Several clinical studies have shown that a secondary mutation in the tyrosine kinase domain of EGFR (T790M) is responsible for the development of resistance to EGFR-targeting TKIs in approximately half of the cases of lung adenocarcinoma [19,20,21]. Acquired NSCLC resistance to TKIs has been associated to overexpression and activation of other receptor tyrosine kinases (RTKs) including HER3, AXL or MET [22,23,24,25,26], to modulation of Fas receptor and NF-kB signaling pathways [27] and to epithelial to mesenchymal transition (EMT) [28,29,30]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call