Abstract
With each additive functional of Markov processes we associate a measure and characterize, under duality hypotheses, those which correspond to σ \sigma -finite measures. This enables us to weaken the hypotheses of Meyer’s theorem on representation of potentials of measures as potentials of additive functional. We characterize also the measures which are associated with continuous additive functionals. This leads us to show that for each finite continuous additive functional of the process there exists a finite continuous additive functional of the dual process such that the corresponding time-changed processes are in duality. Similar results are also stated for subprocesses which generalize results by Hunt and Blumenthal and Getoor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.