Abstract

The decision to irradiate during pregnancy is based on a risk benefit compromise of two kinds: maternal risk and fetal risk. The aim of this work is to determine the foetal risk, and uterine dose measurement in proton therapy. Foetal exposure during treatment is linked to two sources: the treatment phase, and the repositioning phase. An Alderson-Rando anthropomorphic ghost (170cm, 74kg) was positioned on the table in the treatment position. A tissue-equivalent proportional counter (TEPC), adapted to the analysis of complex radiation fields (neutron and photonics), was used to determine the irradiation related to the treatment phase. An AT1123 radiation survey meter was used to measure photons generated by X-ray radiation. I dosimetry was proposed using radio-photoluminescent dosimeters, allowing for a daily check of the dose received in the uterus. The treatment phase produces higher uterine doses than the positioning phase, but these remain very low. The equivalent dose received in the uterus for the entire treatment is estimated at 840 μSv. Using a methodology for measuring the out-of-field dose with pencil beam scanning proton therapy, the foetal dose in the first trimester was well below the acceptance dose of 100 mGy determined by the International Commission on Radiological Protection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call