Abstract
Recent years have seen a dynamic development in statistical methods for analysing data contaminated with outliers. One of the more important techniques that can deal with outlying observations is robust regression, which represents four decades of research. Until recently the implementation of robust regression methods, such as M-estimation or MM-estimation, was limited owing to their iterative nature. With advances in computing power and the growing availability of statistical packages, such as R and SAS, Stata, the applicability of robust regression methods has increased considerably.The aim of the study is to evaluate one of these methods, namely M-estimation, using data from a survey of small and medium-sized businesses. The comparison involves nine M-estimators, each based on a different weighting function. The results and conclusions are formulated on the basis of empirical data from the DG-1 business survey.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.