Abstract
Phillips and Magdalinos (2007) introduced a larger neighborhoods of one (called moderate deviations) than the conventional local to unity roots in autoregression models. Least square estimates (LSE) of the serial correlation coefficient were studied and asymptotics were provided. In this article, we investigate the M-estimation of the serial correlation coefficient having moderate deviations from the unit root. For both the near stationary case and explosive case, the Bahadur representations and limits in distribution are given for the M-estimators of the serial correlation coefficient. The limit theory demonstrates that the convergence rates of the M-estimators are the same as that for LSE hence bridging the very different convergence rates of the stationary and unit root cases. The limit theory also facilitates the comparison of the relative asymptotic efficiency among different estimators within the family of M-estimators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.