Abstract

BackgroundCell invasion is a hallmark of metastatic cancer, leading to unfavorable clinical outcomes. In this study, we established two highly invasive lung cancer cell models (A549-i8 and H1299-i8) and identified mesoderm-specific transcript (MEST) as a novel invasive regulator of lung cancer. We aim to characterize its biological function and clinical significance in lung cancer metastasis.MethodsTranswell invasion assay was performed to establish high-invasive lung cancer cell model. Immunohistochemistry (IHC) was used to detect MEST expression in tumor tissues. Mass spectrometry and bioinformatic analyses were used to identify MEST-regulated proteins and binding partners. Co-immunoprecipitation assay was performed to detect the interaction of MEST and VCP. The biological functions of MEST were investigated in vitro and in vivo. Immunofluorescence staining was conducted to explore the colocalization of MEST and VCP.ResultsMEST overexpression promoted metastasis of lung cancer cells in vivo and in vitro by activating NF-κB signaling. MEST increased the interaction between VCP and IκBα, which accelerated IκBα degradation and NF-κB activation. Such acceleration was abrogated by VCP silencing, indicating that MEST is an upstream activator of the VCP/IκBα/NF-κB signaling pathway. Furthermore, high expressions of MEST and VCP were associated with poor survival of lung cancer patients.ConclusionCollectively, these results demonstrate that MEST plays an important role in driving invasion and metastasis of lung cancer by interacting with VCP to coordinate the IκBα/NF-κB pathway. Targeting the MEST/VCP/IκBα/NF-κB signaling pathway may be a promising strategy to treat lung cancer.

Highlights

  • Cell invasion is a hallmark of metastatic cancer, leading to unfavorable clinical outcomes

  • Principal component analysis (PCA) of differentially expressed proteins (DEPs; P < 0.05, fold change (FC) ≥ 1.5; Supplementary Table S1) demonstrated a clear distinction between the A549-i8 and A549-parental samples, suggesting the protein expression pattern in highly invasive cancer cells is different from parental cells (Figure S1C)

  • mesoderm-specific transcript (MEST) interacts with Valosin containing protein (VCP) to regulate the degradation of IκBα protein To investigate the molecular mechanisms for how MEST regulates NF-κB signaling, we identified binding partners of MEST by performing immunoprecipitation coupled with mass spectrometry analysis (IP-Mass spectrometry (MS))

Read more

Summary

Introduction

Cell invasion is a hallmark of metastatic cancer, leading to unfavorable clinical outcomes. We established two highly invasive lung cancer cell models (A549-i8 and H1299-i8) and identified mesoderm-specific transcript (MEST) as a novel invasive regulator of lung cancer. We established two highly invasive lung cancer cell sublines by serial selections for invading through matrigel-coated invasion chamber and performed stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative proteomics to identify the critical proteins that drive lung cancer invasion. Among the upregulated proteins in the highly invasive cells, MEST (mesoderm-specific transcript)/PEG1 (paternally expressed gene 1), a member of the α/β hydrolase superfamily located in the 7q32, drew our strong interest. MEST was reported as an imprinted gene that plays roles in the mesoderm development, which is only expressed from the paternally derived chromosome [7]. As its gene product, the role of MEST protein in lung cancer invasion and metastasis is unclear

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.