Abstract
Periostin, which is a secreted protein that supports cell adhesion, is highly expressed in the periodontal ligament (PDL). Twist, a basic helix-loop-helix (bHLH) transcription factor and a negative regulator of osteoblast differentiation, has been found to regulate the periostin gene transcription. Since occlusal force is thought to be important in the homeostasis of the PDL, in this study we investigated the expression of periostin and Twist mRNA in the mouse periodontal tissue following removal of antagonizing teeth. Unilateral maxillary tooth extraction was performed in 3-week-old male mice to produce occlusal hypofunction of the right mandibular molars. The expressions of periostin and Twist mRNA were examined by real time-PCR and in situ hybridization at 12, 24, 72 and 168 h after the tooth extraction. The real-time PCR analysis showed that periostin and Twist mRNA significantly decreased at 24 h to 14.5 and 49.9% of those in control group, respectively. But the recovery began at 72 and 168 h, no significant difference was observed. As determined by in situ hybridization analysis, the number of periostin and Twist mRNA-expressing PDL cells showed a marked decrease at 24 h, although an increase was observed from 72 h until the distribution was almost similar to that of the control group at 168 h. These results suggested that occlusal force might have putative roles in periostin and Twist gene expression in the PDL and the changes in their expression level during hypofunction may be considered a form of adaptation to environmental changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.