Abstract
Hepatic gene expression as a function of culture duration was evaluated in prolonged cultured human hepatocytes. Human hepatocytes from seven donors were maintained as near-confluent collagen-Matrigelsandwich cultures, with messenger RNA expression for genes responsible for key hepatic functions quantified by real-time polymerase chain reaction at culture durations of 0 (day of plating), 2, 7, 9, 16, 23, 26, 29, 36, and 43 days. Key hepatocyte genes were evaluated, including the differentiation markers albumin, transferrin, and transthyretin; the hepatocyte-specific asialoglycoprotein receptor 1 cytochrome P450 isoforms CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, and CYP3A7; uptake transporter isoforms SLC10A1, SLC22A1, SLC22A7, SLCO1B1, SLCO1B3, and SLCO2B1; efflux transporter isoforms ATP binding cassette (ABC)B1, ABCB11, ABCC2, ABCC3, ABCC4, and ABCG2; and the nonspecific housekeeping gene hypoxanthine ribosyl transferase 1 (HPRT1). The well established dedifferentiation phenomenon was observed on day 2, with substantial (>80%) decreases in gene expression in day 2 cultures observed for all genes evaluated except HPRT1 and efflux transporters ABCB1, ABCC2, ABCC3 (<50% decrease in expression), ABCC4 (>400% increase in expression), and ABCG2 (no decrease in expression). All genes with a >80% decrease in expression were found to have increased levels of expression on day 7, with peak expression observed on either day 7 or day 9, followed by a gradual decrease in expression up to the longest duration evaluated of 43 days. Our results provide evidence that cultured human hepatocytes undergo redifferentiation upon prolonged culturing. SIGNIFICANCE STATEMENT: This study reports that although human hepatocytes underwent dedifferentiation upon 2 days of culture, prolonged culturing resulted in redifferentiation based on gene expression of differentiation markers, uptake and efflux transporters, and cytochrome P450 isoforms. The observed redifferentiation suggests that prolonged (>7 days) culturing of human hepatocyte cultures may represent an experimental approach to overcome the initial dedifferentiation process, resulting in "stabilized" hepatocytes that can be applied toward the evaluation of drug properties requiring an extended period of treatment and evaluation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Drug metabolism and disposition: the biological fate of chemicals
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.