Abstract
This paper studies the user activity detection and channel estimation problem in a temporally-correlated massive access system where a very large number of users communicate with a base station sporadically and each user once activated can transmit with a large probability over multiple consecutive frames. We formulate the problem as a dynamic compressed sensing (DCS) problem to exploit both the sparsity and the temporal correlation of user activity. By leveraging the hybrid generalized approximate message passing (HyGAMP) framework, we design a computationally efficient algorithm, HyGAMP-DCS, to solve this problem. In contrast to only exploiting the historical estimations, the proposed algorithm performs bidirectional message passing between the neighboring frames for activity likelihood update to fully exploit the temporally-correlated user activities. Furthermore, we develop an expectation maximization HyGAMP-DCS (EM-HyGAMP-DCS) algorithm to adaptively learn the hyperparameters during the estimation procedure when the system statistics are unknown. In particular, we propose to utilize the analysis tool of state evolution to find the appropriate hyperparameter initialization of EM-HyGAMP-DCS. Simulation results demonstrate that our proposed algorithms can significantly improve the user activity detection accuracy and reduce the channel estimation error.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.