Abstract

Base station (BS) cooperation can turn unwanted interference to useful signal energy for enhancing system performance. In the cooperative downlink, zero-forcing beamforming (ZFBF) with a simple scheduler is well known to obtain nearly the performance of the capacity-achieving dirty-paper coding. However, the centralized ZFBF approach is prohibitively complex as the network size grows. In this paper, we devise message passing algorithms for realizing the regularized ZFBF (RZFBF) in a distributed manner using belief propagation. In the proposed methods, the overall computational cost is decomposed into many smaller computation tasks carried out by groups of neighboring BSs and communication is only required between neighboring BSs. More importantly, some exchanged messages can be computed based on channel statistics rather than instantaneous channel state information, leading to significant reduction in computational complexity. Simulation results demonstrate that the proposed algorithms converge quickly to the exact RZFBF and much faster compared to conventional methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call