Abstract

The standard population protocol model assumes that when two agents interact, each observes the entire state of the other agent. We initiate the study of $\textit{message complexity}$ for population protocols, where the state of an agent is divided into an externally-visible $\textit{message}$ and an internal component, where only the message can be observed by the other agent in an interaction. We consider the case of $O(1)$ message complexity. When time is unrestricted, we obtain an exact characterization of the stably computable predicates based on the number of internal states $s(n)$: If $s(n) = o(n)$ then the protocol computes semilinear predicates (unlike the original model, which can compute non-semilinear predicates with $s(n) = O(\log n)$), and otherwise it computes a predicate decidable by a nondeterministic $O(n \log s(n))$-space-bounded Turing machine. We then introduce novel $O(\mathrm{polylog}(n))$ expected time protocols for junta/leader election and general purpose broadcast correct with high probability, and approximate and exact population size counting correct with probability 1. Finally, we show that the main constraint on the power of bounded-message-size protocols is the size of the internal states: with unbounded internal states, any computable function can be computed with probability 1 in the limit by a protocol that uses only $\textit{1-bit}$ messages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.