Abstract

Estuaries often have distinct zones of high chlorophyll a concentrations, known as chlorophyll maximum (CMAX). The persistence of these features is often attributed to physical (mixing and light availability) and chemical (nutrient availability) features, but the role of mesozooplankton grazing is rarely explored. We measured the spatial and temporal variability of the CMAX and mesozooplankton community in the eutrophic Neuse River Estuary, North Carolina. We also conducted grazing experiments to determine the relative impact of mesozooplankton grazing on the CMAX during the phytoplankton growing season (spring through late summer). The CMAX was consistently located upriver of the zone of maximum zooplankton abundance, with an average spatial separation of 18 km. Grazing experiments in the CMAX region revealed negligible effect of mesozooplankton on chlorophyll a during March, and no effect during June or August. These results suggest that the spatial separation of the peak in chlorophyll a concentration and mesozooplankton abundance results in minimal impact of mesozooplankton grazing, contributing to persistence of the CMAX for prolonged time periods. In the Neuse River Estuary, the low mesozooplankton abundance in the CMAX region is attributed to lack of a low salinity tolerant species, predation by the ctenophore Mnemiopsis leidyi, and/or physiologic impacts on mesozooplankton growth rates due to temperature (in the case of low wintertime abundances). The consequences of this lack of overlap result in exacerbation of the effects of eutrophication; namely a lack of trophic transfer to mesozooplankton in this region and the sinking of phytodetritus to the benthos that fuels hypoxia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call