Abstract

While fibrosis in endometriosis has recently loomed prominently, the sources of myofibroblasts, the principal effector cell in fibrotic diseases, remain largely obscure. Mesothelial cells (MCs) can be converted into myofibroblasts through mesothelial-mesenchymal transition (MMT) in many fibrotic diseases and adhesion. To evaluate whether MCs contribute to the progression and fibrogenesis in endometriosis through MMT. Dual immunofluorescence staining and immunohistochemistry using antibodies against calretinin, Wilms' tumor-1 (WT-1), and α-smooth muscle actin (α-SMA) were performed on lesion samples from 30 patients each with ovarian endometrioma (OE) and deep endometriosis (DE), and 30 normal endometrial (NE) tissue samples. Human pleural and peritoneal MCs were co-cultured with activated platelets or control medium with and without neutralization of transforming growth factor β1 (TGF-β1) and/or platelet-derived growth factor receptor (PDGFR) and their morphology, proliferation, and expression levels of genes and proteins known to be involved in MMT were evaluated, along with their migratory and invasive propensity, contractility, and collagen production. The number of calretinin/WT-1 and α-SMA dual-positive fibroblasts in OE/DE lesions was significantly higher than NE samples. The extent of lesional fibrosis correlated positively with the lesional α-SMA staining levels. Human MCs co-cultured with activated platelets acquire a morphology suggestive of MMT, concomitant with increased proliferation, loss of calretinin expression, and marked increase in expression of mesenchymal markers. These changes coincided with functional differentiation as reflected by increased migratory and invasive capacity, contractility, and collagen production. Neutralization of TGF-β1 and PDGFR signaling abolished platelet-induced MMT in MCs. MCs contribute to lesional progression and fibrosis through platelet-induced MMT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.