Abstract

In this work, three different block copolymer/silica hybrid nanocomposite monoliths that possess mesostructured domains (hexagonal, cubic, and disordered) were prepared through the micellization of the block copolymer during the sol-gel process of a silica precursor. Transparent block copolymer/silica nanocomposite monoliths were obtained from the amphiphilic triblock copolymer poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (EO106PO70EO106, Pluronic F127), which we used to organize the polymerizing silica networks; the ratio between the block copolymer and silica was fixed at 60:40 (wt%). Small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) were used to observe the mesostructural ordering. Temperature-dependent SAXS patterns of the cubic structured nanocomposites showed that the calcination process takes place at 210°C. The transmittances of the nanocomposite monoliths over the range of wavelengths from 400 to 800 nm was >85%. From rheological measurements at low frequency, it was found that the hexagonally structured monoliths had higher storage and loss moduli relative to the monoliths possessing cubic and disordered structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call