Abstract
We study the Poiseuille flow of a soft-glassy material above the jamming point, where the material flows like a complex fluid with Herschel–Bulkley rheology. Microscopic plastic rearrangements and the emergence of their spatial correlations induce cooperativity flow behavior whose effect is pronounced in presence of confinement. With the help of lattice Boltzmann numerical simulations of confined dense emulsions, we explore the role of geometrical roughness in providing activation of plastic events close to the boundaries. We probe also the spatial configuration of the fluidity field, a continuum quantity which can be related to the rate of plastic events, thereby allowing us to establish a link between the mesoscopic plastic dynamics of the jammed material and the macroscopic flow behaviour.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Statistical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.