Abstract

In this work, the formation of polymeric micelles as drug delivery vehicles in an aqueous environment is investigated by dissipative particle dynamics (DPD) simulations. Doxorubicin (DOX) is selected as the model drug, whereas docosahexaenoic acid (DHA) conjugated His10Lys10 (DHA-His10Lys10) as the drug carrier. It is shown from DPD simulation that drug molecules and DHA-His10Lys10 molecules could aggregate and form micelles under a defined composition recipe; drug molecules are homogeneously distributed inside the carrier matrix, on whose surface the stabilizer lysine segments are absorbed. Under different compositions of drug and water, aggregate morphologies of polymeric micelles are observed as spherical, columnar, and lamellar structures. We finally proposed the formation mechanism of drug loaded polymeric micelles and apply it in practice by analyzing the simulated phenomena. All the results can effectively guide the experimental preparation of drug delivery system with desired properties or explore a novel polymeric micelle with high performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.