Abstract

AbstractPoly(aryl ether sulfone ketone) (PPESK) is an engineering plastic with high strength, good heat resistance, insulation, and chemical corrosion resistance. The properties of PPESK fiber prepared by centrifugal melt electrospinning can be improved, and the method is efficient and environmentally friendly. This article employs a systematic analysis to investigate the impact of process parameters on the jet formation process, jet motion, fiber diameter, fiber yield, and changes in molecular chain orientation of PPESK. The analysis uses dissipative particle dynamics simulation to reveal that PPESK fibers can attain a certain degree of refinement, and fiber yield can be increased with an appropriate increase in rotational speed, temperature, and electric field force. Moreover, for PPESK with different chain lengths, longer molecular chains impede the untwisting of the molecular chains within the fiber, weakening the fiber orientation, increasing fiber diameter, and resulting in a slower fiber yield increase. These simulation results provide theoretical guidance for preparing PPESK ultrafine fibers with the required performance, shortening the exploration process of actual spinning, and saving time and labor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.