Abstract

In this article we studied the micellar formation of poly(N-isopropyl acrylamide)-b-polyethylene oxide (PNIPAM-b-PEO) copolymers in an aqueous system. From molecular simulations the dependence on temperature of the Flory–Huggins interaction parameter χ for PNIPAM and PEO in water is obtained and compared with available experimental results and values from other theoretical calculations. By means of dissipative particle dynamics (DPD) we then simulated the coil–globule transition for PNIPAM chains in water with a transition temperature of around 305 K. The simulations for PNIPAM-b-PEO copolymers showed that at room temperature the chains are miscible in an aqueous phase but with a temperature increase the system turns into micelles at T = 305 K. The change in micelle anisotropy due to a different ratio PNIPAM/PEO of chains is also analyzed. What is observed is that for large PEO the large number of dissolved PEO chains gives a large corona size and the micelle is not spherical but obloide and as the number of PNIPAM is increased the micelle acquires a spherical shape. As an important application we considered the system micelle-water/anionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate [BMIM]+[PF6]−). By increasing the temperature of the system from 306 K it is shown that at T = 345 K there is a transfer of the micelle from water to the ionic liquid phase and this was due to the change in the relative affinity of PEO to water and ionic liquid expressed by the change in χ. All the simulation outcomes are qualitatively consistent with experimental results and thus to our knowledge we give the first set of χ values for the interaction between PNIPAM and water in a wide range of temperature values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.