Abstract

Two coupled nanolasers exhibit a mode switching transition, theoretically described by mode beating limit cycle oscillations. Their decay rate is vanishingly small in the thermodynamic limit, i.e., when the spontaneous emission noise tends to zero. We provide experimental statistical evidence of mesoscopic limit cycles (∼10^{3} intracavity photons). Specifically, we show that the order parameter quantifying the limit cycle amplitude can be reconstructed from the mode intensity statistics. We observe a maximum of the averaged amplitude at the mode switching, accounting for limit cycle oscillations. We finally relate this maximum to a dip of mode cross-correlations, reaching a minimum of g_{ij}^{(2)}=2/3, which we show to be a mesoscopic limit. Coupled nanolasers are thus an appealing test bed for the investigation of spontaneous breaking of time translation symmetry in the presence of strong quantum fluctuations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.