Abstract

A comprehensive mesoscopic investigation has been conducted into the classic topic of size effect, using notched plain concrete beams subjected to three-point bending as a test bed. The concrete beams are modelled as random heterogeneous material containing three components, coarse aggregates, mortar and the interface transition zone. Mesoscopic numerical simulations using a 2D mesoscale continuum damage-based model, enhanced by a nonlocal treatment, is used to capture the whole fracture process in concrete materials. Both global and local numerical results are then examined and verified with relevant experimental evidence from the literature. A stress field interaction theory based on the strip yield model is proposed to interpret the size effect phenomenon and the role of detailed fracture process zone features is discussed accordingly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.