Abstract

Spatial correlation between atoms can generate a depletion in the energy dispersion of acoustic phonons. Two well known examples are rotons in superfluid helium and the Kohn anomaly in metals. Here we report on the observation of a large softening of the transverse acoustic mode in quantum paraelectric SrTiO$_3$ by means of inelastic neutron scattering. In contrast to other known cases, this softening occurs at a tiny wave vector implying spatial correlation extending over a distance as long as 40 lattice parameters. We attribute this to the formation of mesoscopic fluctuating domains due to the coupling between local strain and quantum ferroelectric fluctuations. Thus, a hallmark of the ground state of insulating SrTiO$_3$ is the emergence of hybridized optical-acoustic phonons. Mesoscopic fluctuating domains play a role in quantum tunneling, which impedes the emergence of a finite macroscopic polarisation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.