Abstract

The mesoscopic dynamic behavior of the Oregonator model of the Belousov–Zhabotinsky chemical reaction is investigated as the model system experiences a supercritical Hopf bifurcation from focus to limit cycle oscillation. The study is performed by stochastically simulating the corresponding chemical master equation. Comparing the mesoscopic dynamic results with those obtained by the macroscopic dynamics, we find in the mesoscopic description a new type of oscillating state, in which large-amplitude oscillations and small-amplitude oscillations appear randomly alternately. This new state comes out spontaneously within a certain region called Hopf bifurcation range by us. In the mesoscopic description, the Hopf bifurcation point cannot be shown, being replaced by a Hopf bifurcation range. Furthermore, the applications of this new oscillating state to internal signal stochastic resonance are pointed out.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call