Abstract
Compaction is the process of removing void-space from a porous material. In brittle particulate systems, the majority of densification is caused by particle fracture. This preliminary study aimed to investigate the differences in fracture behaviour between quasi-statically and shock loaded glass-microsphere beds. Macro-scale quasi-static (20 μm s−1) and dynamic compaction curves were measured that show subtle qualitative differences in stress-density space. Samples were recovered from a quasi-static and dynamic experiment at a similar order of stress. Differences in fracture behaviour were observed that may explain the differences in crush curves. Results suggest that the primary total-fracture process occurs relatively instantaneously at low stresses in the quasi-static regime. The sphere fracture process is slow relative to the stress-wave therefore causing a different fracture pattern in the shock regime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.