Abstract

We study mesoscopic pairing in the one-dimensional repulsive Hubbard model and its interplay with the BCS model in the canonical ensemble. The key tool is comparing the Bethe ansatz equations of the two models in the limit of small Coulomb repulsion. For the ordinary Hubbard interaction the BCS Bethe equations with infinite pairing coupling are recovered; a finite pairing is obtained by considering a further density-dependent phase-correlation in the hopping amplitude of the Hubbard model. We find that spin degrees of freedom in the Hubbard ground state are arranged in a state of the BCS type, where the Cooper pairs form a noncondensed liquid on a ``lattice'' of single particle energies provided by the Hubbard charge degrees of freedom; the condensation in the BCS ground state corresponds to Hubbard excitations constituted by a sea of spin singlets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.