Abstract

Abstract A study of mesoscale subduction at the Antarctic Polar Front (PF) is conducted by use of hydrographic data from a high-resolution, quasi-synoptic survey of the front. The geostrophic velocity and isopycnal potential vorticity (PV) fields are computed, and the ageostrophic flow diagnosed from the semigeostrophic omega equation. It is found that the ageostrophic circulation induced by baroclinic instability counteracts the frontogenesis and frontolysis effected by the confluence and difluence, respectively, of the geostrophic velocity field. Though the sense of the ageostrophic circulation is reversed repeatedly along the front, the existence of PV gradients along isopycnals leads to a net cross-front “bolus” transport. In response to a reversal of this gradient with depth (a necessary condition for the onset of baroclinic instability), the bolus transport is northward at the protruding temperature minimum layer that characterizes the PF, and southward above. This net cross-front overturning circul...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call