Abstract
The paper introduces a 3D cellular automaton model for the spatial and crystallographic prediction of spherulite growth phenomena in polymers at the mesoscopic scale. The automaton is discrete in time, real space, and orientation space. The kinetics is formulated according to the Hoffman–Lauritzen secondary surface nucleation and growth theory for spherulite expansion. It is used to calculate the switching probability of each grid point as a function of its previous state and the state of the neighboring grid points. The actual switching decision is made by evaluating the local switching probability using a Monte Carlo step. The growth rule is scaled by the ratio of the local and the maximum interface energies, the local and maximum occurring Gibbs free energy of transformation, the local and maximum occurring temperature, and by the spacing of the grid points. The use of experimental input data provides a real time and space scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.