Abstract

Observations and numerical simulations are used to investigate the atmospheric processes that led to extreme rainfall and resultant destructive flash flooding in eastern Missouri on 6–7 May 2000. In this event, a quasi-stationary mesoscale convective system (MCS) developed near a preexisting mesoscale convective vortex (MCV) in a very moist environment that included a strong low-level jet (LLJ). This nocturnal MCS produced in excess of 300 mm of rain in a small area to the southwest of St. Louis, Missouri. Operational model forecasts and simulations using a convective parameterization scheme failed to produce the observed rainfall totals for this event. However, convection-permitting simulations using the Weather Research and Forecasting Model were successful in reproducing the quasi-stationary organization and evolution of this MCS. In both observations and simulations, scattered elevated convective cells were repeatedly initiated 50–75 km upstream before merging into the mature MCS and contributing to the heavy rainfall. Lifting provided by the interaction between the LLJ and the MCV assisted in initiating and maintaining the convection. Simulations indicate that the MCS was long lived despite the lack of a convectively generated cold pool at the surface. Instead, a nearly stationary low-level gravity wave helped to organize the convection into a quasi-linear system that was conducive to extreme local rainfall amounts. Idealized simulations of convection in a similar environment show that such a low-level gravity wave is a response to diabatic heating and that the vertical wind profile featuring a strong reversal of the wind shear with height is responsible for keeping the wave nearly stationary. In addition, the convective system acted to reintensify the midlevel MCV and also caused a distinct surface low pressure center to develop in both the observed and simulated system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.