Abstract
Mesoporous silica nanoparticles (MSN) have potential as drug delivery and controlled release devices due to their high surface area and absorption capabilities. The effect of surface charge and pH on the release of the fluorescent dye, rhodamine 6G, from MSN has been studied. Release profiles of rhodamine 6G from bare and amine-coated MSN at pH 5.0 and 7.4 are very different and demonstrate that electrostatic interactions between entrapped rhodamine 6G molecules and the charged surface of the MSN have a significant effect on release kinetics. Release of rhodamine 6G from amine-coated MSN can be fit to a single exponential function, while release from bare MSN can be fit to a double exponential function—indicating that the release of rhodamine 6G from bare MSN is a two-phase process. In addition, it was determined that MSN need to be sonicated in dye solution to maximize their loading capacity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.